Letter of Transmittal

Dear Dr. Kastner and Kevin Wu,

Our team is excited to present our capstone design report on optimizing L-asparaginase
production, a critical enzyme used in the food industry to mitigate the formation of acrylamide.
Through genetic engineering techniques, we introduced four different plasmids containing
genetic material encoding for L-asparaginase. From this study, we identified one specific gene
that can synthesize L-asparaginase in sufficient quantities for investigation into purification and
quantification purposes.

To optimize the production process, we conducted a literature review and identified a
submerged, fed-batch reactor as the optimal method for L-asparaginase manufacturing. Using
Python programming, mass and energy balances were conducted to identify key kinetic and cell
growth parameters. An economic analysis was performed to evaluate production costs, and an
environmental analysis assessed potential environmental impacts.

Our research has significant implications for the food and pharmaceutical industries by
enhancing the production of a vital food additive drug. As L-asparaginase gains more widespread
adoption within the food industry, our research can continue to make significant contributions to
promoting sustainable and responsible practices.

Thank you for the opportunity to undertake this capstone project. We hope that this report
meets your expectations and provides valuable insights into optimizing L-asparaginase

production. Please feel free to contact us if you have any questions or concerns.

Sincerely,

Alma
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Jordan Bragg, Isabella de Luna, Taylor Gonzalez, Liam Kozma
May 2nd, 2023

Disclaimer: The assumptions, findings, calculations, and conclusions expressed and described in
this report and its exhibits were developed by undergraduate engineering students who are not
licensed professional engineers. This report was prepared as an academic exercise in partial
fulfillment of the College of Engineering Senior Design 4910 course. No part of this report
should be used for planning, budgeting, construction, or fiscal related decisions without a
complete review and written endorsement from an independent, qualified, and licensed engineer
who is willing and able to become the engineer of record for all aspects of the study, calculations,
findings, recommendations, and the project. A complete copy of this report was provided to the
client without any financial reimbursement to its authors or the University of Georgia. The client
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Executive Summary

This capstone project aimed to optimize the production of L-asparaginase, a vital enzyme
used in the food industry to mitigate the formation of acrylamide, a carcinogenic compound
found in baked and fried food products. To achieve this goal, genetic engineering techniques
were used to enhance L-asparaginase production in Escherichia coli. Four different plasmids
encoding L-asparaginase were introduced, derived from an investigation into homologous genes
to ans B, which encodes for L-asparaginase in E. coli. While only one of the four genes
successfully synthesized L-asparaginase in quantities that were insufficient for purification and
quantification purposes, the promising results encourage further exploration of additional genes
to improve production levels.

A literature review was conducted to optimize the production process and identified a
fed-batch reactor as the optimal candidate for L-asparaginase manufacturing. Using Python
programming, mass and energy balances were established to identify key kinetic and cell growth
parameters, facilitating the development of an optimized production process with increased
yields. An economic analysis was performed to evaluate production costs, and an environmental
analysis assessed potential environmental impacts of the optimized production process, ensuring
its sustainability and identifying areas for improvement.

The results of this investigation found that using 0.1 g/LL E. coli cells that are recombinant
with the Campylobacter corcagiensis gene and about 39.4 g/L. of glucose would help us reach a
competitive production rate of enzyme at 6,960 kg/day to allow us to produce a protein product

for $40.



Future steps include protein engineering techniques to optimize the structure of
L-asparaginase for enhanced stability, activity, and specificity, ultimately resulting in a more
effective and economically viable product. This research has significant implications for the food
and pharmaceutical industries by enhancing the production of a vital food additive drug,
ultimately reducing associated costs and risks and promoting a more responsible and sustainable
industry. As L-asparaginase gains more widespread adoption within the food industry, consumers
can benefit from increased confidence in the safety of their food due to effective acrylamide

mitigation.



Background
L-asparaginase Applications

L-Asparagine is a non-essential amino acid that is present in all living cells. The main
function of asparaginase is that it catalyzes the reaction of L-asparagine (ASN) into aspartic acid
(ASP, also known as L-aspartate) and ammonia (NH;) (Figure 1). Breaking down L-asparagine
into these two chemicals can mitigate the presence of carcinogens in cells and other industrial

manufacturing processes.
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Figure 1. Reaction mechanism of L-asparaginase (Nguyen et. al., 2016)

Production of L-asparaginase as a food additive has been widely successful. Maillard
reactions are commonly used in the cooking of food to brown the ingredients and provide flavor.
This reaction occurs between asparagine and reducing sugars (Figure 2), but this change

produces acrylamide, a known carcinogen, as a byproduct.
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Figure 2. Maillard Reaction Mechanism (“Maillard Reaction,” 2022)



As mitigation, asparaginase can be employed to deplete the amounts of asparagine
present and thereby reduce the amount of acrylamide produced, which is the application that
Alma strives to improve. Issues have arisen in the production of asparaginase as a food additive
since the most common form in this application is sourced from fungi. While fungi are known
for their high protein production capabilities, fungi are not as easily used in industry because
they are significantly more difficult to genetically manipulate. Unlike bacteria, fungi are
multicellular, and, because of this, they have more intricate genetic encoding. This makes them
difficult to engineer since it is less likely that a gene will turn on since a plasmid with a promoter
cannot just be inserted into the system. The only widely used way to manipulate fungi is through
manipulation of their fermentation systems; a process susceptible to problems and variations
when produced on a larger scale. Thus, asparaginase production using this methodology can be
faulty and expensive.

L-asparaginase is used as a chemotherapy agent as well, providing a potential future
market for Alma to get involved in. Normal healthy cells are able to synthesize their own
asparagine, whereas carcinogenic cells cannot produce asparagine de novo and depend on
asparagine circulating within a system to survive (Cleveland Clinic). The most predominant
types of asparaginase for cancer use are derived from Escherichia coli and Erwinia chrysanthemi
since they proved to have the most effective anti-cancer ability and are easily producible on a
large scale. Asparaginases from E. coli and Erwinia chrysanthemi differ in their pharmacokinetic
and immunogenic profiles, making the Erwinia-derived form a sufficient alternative to those who

react negatively to the E. coli-derived form.



Alma’s objective within this project is to genetically and metabolically manipulate E. coli
cells to produce L-asparaginase for use in the food industry by experimenting with four selected
genes. These genes were selected to be similar to the gene ansB, which is derived from E. coli
and codes for L-asparaginase. It is hypothesized that at least one of these genes will produce a

higher yield and a more active enzyme when compared to the current competitors.

What is a plasmid?

The injection of the four genes into E. coli requires the modification and insertion of a
bacterial plasmid. Put simply, a plasmid is a circular piece of double-stranded DNA that codes
for protein production. In nature, plasmids are used to give their host a useful characteristic to
help them survive in their environment. A common example is antibiotic resistance (Brown,
2020). However, for industrial applications, they are used to artificially input genes into bacteria,
forcing them to produce a desired protein, which in our case is L-asparaginase.

Compared to other genetic input methods, plasmids are inherently easy to use. For one,
they contain multiple cloning sites (MCS). In essence, these are short segments of DNA that
contain several restriction sites- allowing for the easy insertion of the desired genetic code.
Plasmids also contain an origin of replication (ORI). This genetic code is a DNA sequence that
initiates the replication of the plasmid. Essentially, it allows the plasmid to self-duplicate and
without the ORI, there won’t be enough plasmids for further generations of bacteria (Monroe,
2020).

The functionality of plasmids is tightly controlled by a promoter region that “turns on”
the transcription of genes. This transcription is the process of generating the protein product from

the genetic code. Without the promoter region, the cells would be unable to use the plasmid at



all. This region can be designed to only “turn on” in certain circumstances- such as an absence of
glucose. By using this functionality, plasmid performance can be precisely designed.

While the main objective of plasmids is to input a desired gene into bacteria, a gene for
antibiotic resistance is commonly inserted in addition. This incorporation is important because
the cells will be grown on specific lab-based antibiotic plates, killing any cells that did not take in
the plasmid. This process is done to verify that only the plasmid-containing cells grow. If this
gene was not added, the industrial process would be contaminated with unwanted cells. These
unwanted cells would make the process less efficient as a lower percent of the cells would be
producing the desired protein. It is important to note that this resistance is to lab-based antibiotics
not often used in medicine, such as carbenicillin.

Last, a key characteristic of plasmids that encourages their use in industry are
primer-binding sites. These are coded regions where primers, short DNA sequences, can easily
bind and identify a specific portion of the plasmid. Having these primer sites is advantageous
because primers are easily synthesized in labs and can be used in PCR amplification, a process
that copies and clones a desired DNA fragment to produce high quantities of fragment copies.
This means a small amount of DNA can be purchased or excised from a genome and amplified a
thousandfold, so more desired DNA is readily available for a lower cost. Thus, Alma strives to
produce a meaningful plasmid containing the selected genes in addition to the corresponding
primer sequences. This will ultimately produce recombinant E. coli that can increase the

production of L-asparaginase, and they can be fermented later for industrial application.

L-asparaginase Metabolics



To further understand how to engineer cells to produce more L-asparaginase, the
metabolic pathway involving the enzyme should be considered. The metabolic pathway is
essentially a path of chemical reactions that converts one molecule into another. These molecular
conversions are done for a wide variety of reasons, such as energy storage, or cellular regulation.
Creating one simple molecule, such as glucose, requires many different reactions all involving
many different proteins. To grasp the most important reactions and molecules involved, the

metabolic pathway is determined.
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Figure 3. Superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine.

L-asparaginase is boxed and pointed to by an arrow. (Caspi, R. et al, 2018)

L-asparaginase is primarily involved in the superpathway of aspartate and asparagine
biosynthesis (Figure 3). Note how the reaction described in Figure 1 is involved. Shown in this

pathway are the many molecules involved to produce the L-asparagine that is converted into



L-aspartate through L-asparaginase. By changing the concentrations of these molecules in the
cell, perhaps more L-asparagine could be produced, requiring the cell to make more
L-asparaginase to compensate. Another possibility would be to decrease the amount of
ammonium produced, as too much ammonium can negatively affect cell growth. Both of these
ways could be inflicted through further genetic engineering or through changes in the

fermentation environment of the cells.



Design Objective

Alma’s objective is to examine new approaches and characteristics for the manufacturing
process of L-asparaginase to be applied in the food processing industry. This will be done by
using plasmids to insert four different genes into samples of recombinant E. coli cells. Each E.
coli sample will receive a different gene to be experimented with in the lab. This experimentation
will produce data on each gene regarding how much of a desired enzyme is produced and at what
activities.

All of the genes selected for experimentation are similar to a gene currently used to
produce L-asparaginase in E. coli, however, they have not been used for the production of
asparaginase previously. To provide a potential novel aspect to the project, one of the selected
genes codes for an uncharacterized protein, meaning its function has not yet been determined
experimentally. By examining this protein, data on its activity can be obtained. If this protein is
more effective, it is possible for Alma to publish these findings and share the results within the
scientific community.

Following the selection of these variables, fermentation conditions will be experimented
with to ensure the process is optimized to the fullest potential. Alma expects to assess these
enzymes, document the process of genetically and metabolically engineering them, and compare
them to the existing literature to determine if the resulting process is marketable.

Alma hopes to market its process as a more efficient means of producing asparaginase. A
quicker and more efficient production process can allow for a cheaper food additive product. This
can entice more food companies to use asparaginase in their products, further limiting the

number of carcinogens exposed to the general public.



Stakeholders and Values

In order to understand the best methods to produce this enzyme, the team has reached out
to a multitude of stakeholders who could benefit from this novel process (Figure 1A). The
following stakeholders provided needs that could optimize the production of this vital enzyme
and create a more efficient process for these industries.

Novex Innovations LLC, a full-service contract development and manufacturing
organization, is an external stakeholder for Alma. Alma conducted a phone interview with Doug
Drabble, the COO of Novex, and inquired about the difficulties with upscaling a process, as well
as the most expensive parts of drug manufacturing (Table 3A). Drabble mentioned that
companies like Novex strive to decrease the cost of labor, improve the design of these processes,
and maintain the integrity of biological organisms over time.

Takeda Pharmaceuticals, a research and development-driven pharmaceutical company, is
another external stakeholder for Alma. Alma conducted a phone interview with Justin Rey, the
former Global Operational Excellence Lead at Takeda (Table 4A). Mr. Rey provided valuable
insight into the most important variables in process engineering for biological products in
particular. Mr. Rey emphasized the importance of abiding by regulatory standards, and that every
manipulated variable in a manufacturing process requires approval from regulatory heads.

Dr. Kastner, a biochemical engineering professor at the University of Georgia, is an
internal stakeholder and mentor for Alma. The team met with Dr. Kastner via Zoom biweekly,

where he provided valuable insight on how to approach the project. He suggested developing a



process flow diagram for the production of L-asparaginase, along with an organized timeline of
the tasks for the project.

Dr. Yan, a biochemical engineering professor at the University of Georgia, is an internal
stakeholder for Alma. The team held in-person meetings with Dr. Yan to inquire about the use of
his lab equipment for the in-lab process. He granted the team permission to use his equipment
given that the lab protocol is fully developed.

Our last significant internal stakeholder is Kevin Wu, a design engineer with the UGA
startup program. Alma meets with Kevin weekly, and in these meetings, he has given financial
advice along with strategies on how to approach external stakeholders. He wants Alma to fully
understand the value and opportunities of producing L-asparaginase, as well as make clear what
the FDA regulations are for this project.

Specifically, Alma strives to synthesize a novel microorganism that produces
L-asparaginase. We believe there is potential for at least one of our four genes to produce
asparaginase in a more efficient and cost-effective way compared to current existing processes.
The asparaginase market has been rapidly growing in recent years, in both the food and
pharmaceutical sectors. In 2021, the global asparaginase market was valued at $650 million and
is projected to rise to $1.57 billion by 2028. Asparaginase is a highly sought-out enzyme due to
its chemotherapy and degradation properties, particularly towards the carcinogen, acrylamide.

With the current health craze in modern media, many individuals are increasingly

concerned with what is going into their bodies. The mitigation of carcinogens through an



asparaginase food additive can give food companies a leg-up over others who do not invest as
much in cancer prevention. Additionally, since many baked snacks such as crackers and cookies
have a higher concentration of acrylamide, parents can worry less about the impact of their

children’s snacks on their future health.



Engineering Specifications

The primary engineering specifications for the project were determined by
cross-examining stakeholder needs with the decision matrix to provide insight into which design
concept would prove fruitful. Based on these factors, it was decided that a Michaelis-Menten
constant, Ky, of less than 15 uM was the target for the enzyme along with activity over 280
IU/mg. The Michaelis-Menten constant indicates how much substrate is needed to catalyze the
reaction, so a lower value means less substrate is required to completely catalyze the reaction,
indicating a more effective enzyme. A high activity signifies this as well. These targets are based
on literature data found for L-asparaginase derived from wild-type E. coli, so, if one of the four
genes codes for an enzyme that meets these criteria, it will be utilized in further lab
experimentation.

Additionally, a goal of fewer than 24 hours for incubation time was desired based on
literature data for the fermentation of wild-type E. coli. Thus, to optimize the process, Alma
seeks to decrease this incubation time to produce more enzymes at a quicker rate compared to
that of the existing process. Coinciding with this, Alma is seeking to model a process that
produces over 58,000 kg of enzyme per day based on literature and competitor data. Producing a
higher quantity would signify a successfully optimized process, which is Alma’s primary goal.

Another target of interest is the dissolved oxygen levels within the fermenter. Dissolved
oxygen is significant to the process because it dictates the maximum amount of oxygen that the
bacterial cells can uptake. Decreasing these levels from the usual 60-80% could asphyxiate the
cells and cause them to produce less product, or change their metabolic pathways to those seen

under anaerobic conditions, which is undesirable for Alma’s objective. Increasing this level,



however, could lead to a possible increase in production, so another engineering specification is a
dissolved oxygen level of greater than 80% to push the cells toward maximum production.

Lastly, other specifications to note are the physiological conditions the fermenters will
operate under; a pH of 7 and a temperature of 37 °C is common for microbial procedures, and
this tends to be ideal for enzymes. These parameters, unlike dissolved oxygen or media, cannot
be altered as much. At variations of these parameters, cellular features such as key proteins, will
denature- a process where a protein’s three-dimensional shape deteriorates and loses its integrity.
This denaturing renders the cells nonfunctional, so these specifications are likely to be the

optimal conditions and should remain unchanged.



Benchmarking

L-asparaginase has been on the market for years, and there are multiple established
competitors. Novozymes, a leading biotechnology company, has created a line of Acrylaway
products, which have asparaginase in them for the removal of acrylamide; they have a series of
both liquid and granular products with some variations. These products are commended for their
use in infant crackers and cookies, and they cite up to a 95% decrease in acrylamide levels in
baked goods. The source of this asparaginase is derived from Aspergillus oryzae, a common type
of fungus.

DSM, a nutritional company, has developed PreventAse. PreventAse was created to
reduce acrylamide levels in baking, and this product’s launch coincided with the launch of
Novozymes’ Acrylaway. PreventAse also boasts a 95% decrease in acrylamide levels generated
when cooking foods. DSM’s asparaginase source varies from Novozymes and is derived from
Aspergillus niger.

Lastly, Kerry is a food and nutrition group that developed a product called Acryleast for
the removal of acrylamide using asparaginase in yeast. This product however, can only be used in
foods that exclusively use yeast and are baked. Unlike the other two products, Acryleast cannot
be used in fried foods. Acryleast only provides an 80% cut in acrylamide levels compared to the
other products.

All three competitors use fungi to produce their enzymes which is common in the

industry due to their high protein production capabilities. However, given the multicellular nature



of Aspergillus and the eukaryotic nature of yeast, they are significantly more difficult to
genetically manipulate than other unicellular organisms, such as bacteria. Despite this, all three
alternative processes use the native genes of the fungi to produce their enzyme. Additionally, the
competitors use solid-state fermentation, a process that uses solid materials such as agricultural
waste, as feed into the fermenter. Along with this, the fungi are grown on solid scaffolds to
improve the transfer of oxygen and nutrients into the cell due to the increase in exposed surface
area.

While our process provides an alternative to the pre-existing methodologies of producing
L-asparaginase, there are possible limitations to the process. Bacteria can be difficult to maintain
in industrial conditions since they have the ability to become recombinant. This means they can
mutate, which can result in decreased efficiency. Thus, this can harm the rate at which Alma’s
enzyme is produced, which is why a portion of the process is dedicated to optimization. To
mitigate this, Alma proposes the use of fed-batch fermentors to ensure a decrease in genetic drift
compared to that of a continuous process.

Additionally, Alma proposes the use of a 60,000 L, fed-batch, submerged fermentation
system, a process involving the agitation of microbes submerged in a nutrient-dense medium, as
a means for producing the enzyme. This route is a more suitable industrial process for microbes
because of its high moisture content and its use of defined media compared to solid-state

materials.



Design Concepts

The design concepts for this process were proposed on the basis of a few select criteria;
first, the genetically modified E. coli will use the gene that produces the highest quantity of the
most active enzyme. This can be determined from lab scale experiments using four different
genes which were selected based on their similarity to the native ansB gene in wild-type E. coli,
and these values ranged from 43.7% to 73.2% similar. The gene codes come from different types
of bacteria- specifically from Salmonella arizonae, Campylobacter corcagiensis, Actinobacillus
succinogenes, and Aeromonas hydrophila subsp. hydrophila- and they encode for
L-asparaginase. These codes were then modified and edited to reduce any sources of error that
may occur during cloning, specifically hairpin formations- a type of RNA fold that prevents the
transcription of DNA- and internal cut sites- regions on the gene that can be physically cut by
restriction enzymes. This modification was necessary to ensure the genes could successfully be
used in the lab experiments.

The next criterion for design is derived from stakeholder needs, and it is the use of the
most active enzyme with the highest yield. This is based on the results and data from the lab
experiments, which will be performed next semester, and whichever gene fits this description
will be used in the theoretical scale-up model with its corresponding data.

Additionally, both a continuous and batch system were proposed for the fermentation
process; continuous fermentation involves the continuous adding and removing of media within
the fermentation where steady-state conditions are eventually reached. This quasi-steady state
has its advantages: it is simpler to model and design within the system, and, in industry, it allows

for the possibility of recycling streams which can be cost-effective. However, continuous



fermentation uses the same microorganisms in the process, so if the process is run for long
periods of time, the microbes are more prone to mutate, leading to an increase in genetic
variation.

For a batch system, specifically a fed-batch system, the media flows into the reactor, but
is not removed at a continuous rate; thus, the working volume of the reactor changes with respect
to time, and the product stream is removed intermittently. While this process is more
labor-intensive to model and requires strict oversight and operation, it reduces the amount of
variation among the microbes within the system.

Last, proposed fermentation designs included solid-state and submerged fermentation.
Solid-state utilizes solid substrates as feed into the fermenter; materials such as tea waste, saw
dust, soybean waste, or apple pomace may be used. This style of fermentation is especially
conducive to fungi because the reactor possesses a lower moisture content than that of a
submerged fermenter, reducing the chances of contamination. Additionally, various scaffolding
materials may be used to immobilize the cells and allow for successful growth, and the selection
of the scaffold provides an opportunity for improved control over the various parameters as the
material can have a large impact on key features, such as fixation, oxygen uptake, cell seeding,
etc.

The other method proposed was submerged fermentation, a process using liquid media
flowing into a fermenter that contains various nutrients and high amounts of water. Thus, this
method has a much higher moisture content compared to the solid-state fermentation model.

Given the liquid nature of the process, this fermentation uses continuous agitation to ensure



proper stirring and distribution of dissolved oxygen and nutrients, and it prevents the build-up of
toxic waste products. No scaffolding or cell fixation is used in the system.

The team developed a quality functions diagram to identify key variables in our process
and to determine the most important aspects that should be focused on (Figure 10A). From
research and input from our stakeholders, several customer requirements were identified.
Improving enzyme production and generating highly active enzymes were of the highest
importance, followed by making the overall process cheaper and faster, and optimizing
fermentation growth parameters. Various functional requirements were quantified based on their
importance and correlation with customer needs. It was found that the selection of our gene and

the efficiency of our scale-up simulation were the most integral parts of the project.



Design for Scale-Up

Alma proposes using a 60,000 L fed-batch fermentation system because of its ability to
produce the necessary quantity of enzyme to compete with Novozymes and our other
competitors. This large volume allows for high yield, but the system is not too large where dead
zones, areas where there is limited agitation, will occur. Thus, glucose at high flow rates can
enter the system, and agitation is feasible without excessive amounts of heat or energy. The
fermenter will be inoculated with recombinant E. coli containing our plasmid after being cultured
in shake flasks.

Following inoculation, the fermenter will be run for about 24 hours, allowing for the
bacteria to grow to an optimal density, and they will synthesize the L-asparaginase. After, the
cells will be lysed via homogenization. Then, the protein will be harvested using centrifugation,
and this will help to separate the solid and liquid components so any debris can later be separated
from the protein. The supernatant will be removed as waste, and the impure solids will move on
to the downstream purification stages. The enzyme will be freeze dried into a powder form and
stored for commercial use.

Multiple factors had to be considered for this design. First, it was necessary to determine
which plasmid should be used in the large scale system. To discover this, bench-scale
experiments were conducted with the aforementioned genes and plasmids to determine which
could successfully produce the enzyme. This was verified using SDS-PAGE gels and DNA gel
electrophoresis. This was considered the prototype for the project, and thus it was tested and
evaluated in the lab. Based on the bench-scale results, our gene of interest, from Campylobacter,

served as the prototype for the scale-up model.



Then, the large scale process was determined based on competitors’ information. A yield
of 6,960 kg/day of L-asparaginase was calculated to remain competitive, and this value, along
with mass and energy balances, determined how much equipment was needed. An economic
analysis was performed to calculate the cost of the process using this information that ultimately
determined how much the product would need to be sold for, and this value was approximately
$40. In addition, based on the large scale mass and energy balances, an environmental analysis
was performed to determine the footprint of this industrial production.

The remainder of this report will detail how and why prototypes were tested and
evaluated, and it will provide the mass and energy balances in addition to the economic and
environmental analyses. Finally, regulatory information based on the final product will be

outlined and described based on the findings of the previously mentioned analyses and tests.



Prototype Evaluation

To evaluate the utility of each gene, they were inserted into individual plasmids using
basic PCR and gene cloning protocols, and the XL-1 Blue E. coli were transformed to take in the
DNA. Once the bacteria had the respective plasmids, they were grown on ampicillin plates to
ensure minimal contamination occurred. Following this growth, plasmid purification was
performed to ensure the proper plasmids were being cloned within the cells. These results can be

seen below (Figure 4).

& C3, our successful
& plasmid!

Figure 4. Gel electrophoresis verification of plasmid C3.

To determine if the plasmids had been cloned correctly, their sizes were examined by
comparing the positions of the plasmid to a standardized DNA ladder. As shown by the blue
circle in Figure 4, plasmid C3, indicating the plasmid containing the gene from Campylobacter,
was determined to be the proper size. This gel revealed that this plasmid could be used to

synthesize protein and should be inoculated into BL21 E. coli.



The plasmids were transformed into this strain of E. coli, and they were grown in culture
flasks for approximately 24 hours, but they were spiked with IPTG about 2 hours into this time
period to promote protein production. After this time, the protein was purified from the overnight
culture by adding a His-tag to the protein. The purified protein was then verified for correctness

using an SDS-PAGE gel, which is also based on size. The results can be seen below in Figure 5.

Figure 5. SDS- PAGE verification of L-asparaginase.

As demonstrated by the yellow circle in Figure 5, a slight band can be seen at the
expected size for L-asparaginase, indicating that the protein was successfully created. Thus,
plasmid C3, derived from Campylobacter, was named the most promising prototype, and it

would be used for the recombinant E. coli going into the scale-up process.



Creativity and Innovation

In our capstone project, we aimed to address the challenge of producing L-asparaginase
more efficiently and sustainably. To achieve this, we employed creative and innovative
strategies, setting our work apart from previous studies and potentially revolutionizing the
production of this enzyme.

One of our key innovations was the use of different genes and host organisms for
L-asparaginase production. We opted for E. coli, a well-studied and versatile bacteria, rather than
the more commonly used fungi. This decision allowed us to explore the potential for further
optimization and efficiency improvements in the production process. Additionally, we
experimented with novel genes not previously used for L-asparaginase production, which could
lead to a more cost-effective and sustainable method for large-scale manufacturing.

Our team also designed a unique process for creating and extracting L-asparaginase. We
identified optimal conditions for the process and sought to improve them by using a specialized
bioreactor, ion exchange purification, and chromatography techniques. This novel process has
the potential to be patented, showcasing our commitment to innovation.

To ensure the practicality and efficiency of our process, we developed a custom Python
algorithm that accounted for various operational variables. This code allowed us to identify the
best settings for our equipment, maximizing production efficiency. Our hands-on approach to
experimentation and our ability to translate theoretical models into tangible outcomes further
demonstrate our dedication to innovation through the use of this novel process.

Moreover, we proposed future experiments and research directions to advance

L-asparaginase production. For instance, we recommended exploring protein engineering



techniques, codon optimization, and metabolic pathway engineering to enhance enzyme
performance and yield.

In conclusion, our capstone project exemplifies creativity and innovation in the field of
L-asparaginase production. By using different genes and host organisms, designing a novel
process, and proposing cutting-edge research directions, we have taken a significant step towards
a more efficient, sustainable, and cost-effective production method. Our work has the potential to
transform the food processing and medical industries, making L-asparaginase more accessible

and affordable for various applications.



Process Flow Diagram and Material Balances
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Figure 6: Process flow diagram for scaled-up process.

The production of L-asparaginase from recombinant E. coli involves multiple stages to
ensure optimal growth, expression, and subsequent purification of the protein. In this section, we
describe the process flow diagram (PFD) and the significance of each stage.

e Shake Flasks: Shake flasks are employed during the initial stage of the process for the

cultivation of recombinant E. coli. This stage is crucial as it facilitates the growth of .

coli cells in a controlled environment while ensuring adequate aeration and mixing. The



flasks are filled with a suitable growth medium containing the appropriate nutrients, and
the cells are cultured until they reach the desired cell density.

Fermentation: Once the cells have grown to the required density, they are transferred to a
fermenter for large-scale production. The fermenter provides a controlled environment
for optimal growth, expression of L-asparaginase, and aeration. The fermentation process
is carefully monitored and maintained at ideal conditions such as temperature, pH, and
dissolved oxygen levels to maximize L-asparaginase production.

Homogenization (Cell Harvesting and Disruption): Following the fermentation process,
the cells are harvested through a centrifugation step. The cell pellet is then subjected to
homogenization to disrupt the cells and release the intracellular L-asparaginase. This step
is essential for obtaining the desired protein, as L-asparaginase is expressed within the
cytoplasm of the recombinant E. coli cells.

Centrifugation (Cell Handling and Disruption): After homogenization, the cell debris
and unwanted components are separated from the soluble protein fraction through
centrifugation. This step ensures the removal of insoluble cellular components, leaving
behind a clear supernatant containing the target protein, L-asparaginase.

Distillation (Separation): Distillation is employed to separate the target protein from
other soluble components in the supernatant. During this process, the volatile components
are evaporated and condensed, while the non-volatile target protein remains in the liquid
phase. This step aids in the initial separation and concentration of L-asparaginase from
other proteins and contaminants.

Chromatography (Purification): The protein sample is further purified using

chromatographic techniques such as ion-exchange, size exclusion, or affinity



chromatography. These methods selectively bind and elute the target protein, effectively
separating it from other proteins and impurities. Chromatography is critical for achieving
the required purity and quality of L-asparaginase for its intended applications.

® [reeze Drying: The purified L-asparaginase is then subjected to freeze-drying
(Iyophilization) to remove any remaining water content. This process involves freezing
the protein solution, followed by the application of a vacuum to sublimate the ice directly
into vapor. Freeze-drying helps to stabilize the protein and enhance its shelf-life, making
it suitable for long-term storage and transportation.

e Storage: Finally, the freeze-dried L-asparaginase is stored at appropriate conditions to
preserve its stability, activity, and quality. Proper storage conditions are crucial for

maintaining the functionality of the protein for its intended applications.

PFD Conclusion

The PFD for recombinant E. coli producing L-asparaginase highlights the critical stages
involved in the production, purification, and storage of this valuable therapeutic protein. Each
stage plays a significant role in ensuring the final product is of the highest quality and suitable

for its intended use.



Fed-batch Reactor Monod Model: Mass Balance
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Figure 7: Mass balance concentrations vs. time in fermenter model.

In this section, we discuss the mass balance of the fed-batch reactor, focusing on the
substrate, biomass, product, oxygen, and acetic acid concentrations. The mass balance equations
are important for understanding the dynamics of the reactor and are used to model and optimize
the production of L-asparaginase. The mass balance equations are derived based on the Monod
model, which accounts for substrate uptake, biomass growth, and product formation, along with

inhibition terms for acetic acid, glucose, and oxygen. The python code can be found in Appendix

B.



Mass Balance Equations

The mass balance equations are given by the following set of differential equations:
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Where:

e S X, P V,O,, and A are the substrate, biomass, product, reactor volume, oxygen, and
acetic acid concentrations, respectively.

® L is the specific growth rate given by the Monod equation with inhibition terms.

e Y, Y,, Y.», and Y, are the yield coefficients for biomass, product, oxygen
consumption, and acetic acid production, respectively.

e F is the feed rate.

e S.is the substrate concentration in the feed.

e V... isthe maximum reactor volume.

® (., is the oxygen consumption rate.



e KL, is the mass transfer coefficient.

e O, 1s the saturation concentration of oxygen.

Code Implementation and Optimization

The mass balance equations are implemented in the Python code using the SciPy library's
odeint function, which solves the system of ordinary differential equations (ODEs). The Monod
model function monod model takes the initial conditions, feed rate, and substrate concentration
in the feed as input arguments and returns the time derivatives of the concentrations.

To optimize the mass balance for profit, the DEAP library is used to create an
optimization problem with the objective function objective function, which calculates the profit
based on the final product mass, total glucose mass fed, and initial biomass concentration. The
optimization problem is set up using the Differential Evolution (DE) algorithm, with custom
mutation and crossover functions. The optimal values for the initial substrate, biomass, and
reactor volume, as well as the substrate concentration in the feed, mass transfer coefficient, and

feed rate, are determined to maximize profit.

Results and Discussion
Upon running the code, the optimized mass balance equations provide the final product,
biomass, substrate, oxygen, and acetic acid concentrations, as well as the reactor volume. The
final values are given as follows:
e Final product concentration: 18.46 g/L
e Final biomass concentration: 1.23 g/L

e Final substrate concentration: 53.02 g/L.



e Final oxygen concentration: 0.00727 g/LL
e Final acetic acid concentration: 1.13 g/L g/LL
e Final reactor volume: 4715.78 L

These final values and the supplementary graphs for the mass balance offer valuable
insights into the performance of the fed-batch reactor for L-asparaginase production. By
optimizing the mass balance, the reactor conditions can be tuned to maximize L-asparaginase
production while minimizing undesired byproducts such as acetic acid. Moreover, optimizing the
feed rate, mass transfer coefficient, and substrate concentration in the feed ensures a
cost-effective and economically viable process.

The optimized reactor volume allows for efficient production while keeping equipment
and operational costs within reasonable limits. The final product concentration of 18.46 g/L
indicates that the optimization process successfully improved L-asparaginase yield.

The graphical representations of the mass balance show the progression of the different
concentrations throughout the process. The biomass concentration initially increases due to
microbial growth but later plateaus as the microorganisms reach the stationary phase. The
product concentration continuously increases throughout the process, signifying effective
conversion of the substrate into the desired product.

In conclusion, implementing and optimizing the mass balance equations using Python
and the SciPy and DEAP libraries have demonstrated the potential for improving L-asparaginase
production in a fed-batch reactor. The optimized parameters can serve as a basis for designing
and operating the reactor at a larger scale, ultimately leading to a more efficient and profitable
bioprocess. Future studies may explore additional optimization techniques, such as

multi-objective optimization, to further enhance the reactor's performance while considering



other factors, such as environmental impact or resource constraints. Furthermore, integrating
process control strategies and real-time monitoring systems could help maintain optimal

conditions during the production process, ensuring consistent product quality and high yields.



Energy Balance and Utility Requirements
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Figure 8: Energy Balance Temperature vs. Time of the Fed Batch Reactor

The energy balance of the fed-batch reactor plays a significant role in determining the
utility requirements, including energy consumption and resource utilization, to maintain the
reactor's optimal conditions for E. coli growth and l-asparaginase production. By optimizing the
energy balance, we can minimize the utility requirements, resulting in reduced operating costs
and a lower environmental footprint. Some of the key utility requirements associated with the
energy balance are:

e [Electricity consumption: The agitation system and the heat exchanger system require

electrical energy to operate. By optimizing the energy balance, we can minimize the



electricity consumption, leading to reduced operating costs and a lower environmental
footprint.

o Cooling and heating utilities: The heat exchanger may require external cooling or heating
utilities to maintain the reactor temperature within the desired range. Optimizing the
energy balance allows for more efficient use of these utilities, reducing the overall
consumption and costs associated with heating and cooling.

® Feedstock utilization: The energy balance helps determine the optimal feed rate, ensuring
efficient utilization of the feedstock, minimizing waste, and lowering costs associated
with raw materials.

e Water consumption: The heat exchanger system may use water as a coolant, depending
on its design. By optimizing the energy balance and reactor temperature, we can
minimize the water consumption, contributing to more sustainable operations.

In conclusion, optimizing the energy balance in the fed-batch reactor is essential not only for
achieving the optimal conditions for E. coli growth and L-asparaginase production but also for
minimizing the utility requirements. This approach helps reduce energy and resource

consumption, decrease operating costs, and lower the environmental impact of the process.

Enhanced Energy Balance of the Fed-Batch Reactor and Its Importance

In this section, we delve into the energy balance of the fed-batch reactor, a critical aspect
for maintaining optimal conditions for E. coli growth and efficient l-asparaginase production.
The energy balance ensures that the reactor temperature stays within the ideal range, which is

essential because E. coli can produce a significant amount of l-asparaginase at a specific



temperature. It also helps to optimize the utility requirements, such as energy consumption, and

minimize any negative environmental impact.

Energy Balance Equations
The energy balance of the fed-batch reactor encompasses the following components:

e Heat generated due to the fermentation of E. coli, modeled using the heat of fermentation
constant. This value is vital as the metabolic activity of E. coli during fermentation
directly influences the amount of heat generated, which in turn affects the overall energy
balance of the reactor.

e Heat transfer between the reactor and the environment, calculated using the heat transfer
coefficient and the surface area of the heat exchanger. Efficient heat transfer is crucial for
maintaining the desired reactor temperature, ensuring optimal conditions for E. coli
growth and l-asparaginase production.

e Heat introduced to the system due to the feed, which depends on the feed rate, specific
heat capacity, and temperature difference between the feed and the reactor. Controlling
this heat input is essential for achieving a stable energy balance and maintaining the
reactor temperature within the desired range.

e Heat generated by the agitation system, which depends on the agitation power per volume
and reactor volume. Agitation is vital for maintaining adequate mixing within the reactor,
ensuring uniform temperature and nutrient distribution, and promoting E. coli growth and
product formation.

The energy balance code can be found in Appendix B and the equation is given by:



e dU/dt=-X * mu * heat of fermentation ecoli - heat transfer coefficient *
current_reactor_area * (T - ambient _temperature) + F * rho * specific_heat capacity *
(T feed - T) + agitation_power per volume * V
To calculate the temperature change in the reactor (dT/dt), we divide dU/dt by the product of
reactor volume (V), specific heat capacity (Cp), and density (rho):

e dT/dt=dU/dt/ (V * specific_heat capacity * rho)

Heat Exchanger and PID Controller

The heat exchanger is a critical component in maintaining the reactor temperature within
the desired range. It serves to dissipate excess heat generated during the fermentation process or
supply additional heat if required. In our model, we implemented a PID controller to optimize
the heat exchanger area based on the reactor volume and temperature, ensuring efficient heat
transfer and contributing to the overall energy balance.

The PID controller takes proportional (Kp), integral (Ki), and derivative (Kd) gains as
inputs and calculates the heat exchanger area correction. It uses the setpoint temperature, the
current reactor temperature (T), integral error, and derivative error to achieve the desired control:

e heat exchanger area correction = pid_controller(Kp, Ki, Kd, setpoint temperature, T,
integral_error, derivative error, timestep)
The current reactor area is updated based on the heat exchanger area correction:

e current reactor area = heat exchanger area(V) + heat exchanger area correction



Optimization of PID Parameters
To find the optimal PID parameters (Kp, Ki, and Kd), we used the Particle Swarm
Optimization (PSO) algorithm, implemented with the pyswarm library. The objective function
takes PID parameters as inputs, sets up and solves the ODE with the given PID parameters, and
returns a performance metric based on the control performance (e.g., the sum of the squared
temperature errors).
The PSO algorithm searches for the best set of PID parameters that minimize the
objective function, resulting in better control of the reactor temperature.
Final Values and Their Importance
Upon solving the ODEs and simulating the fed-batch reactor, we obtained the following
final values:
e Final internal energy: 111313.47 kJ
e Final reactor temperature: 328.49 K
These values are crucial as they offer insights into the reactor's performance, enabling us
to determine the optimal conditions for l-asparaginase production. A stable reactor temperature
ensures that E. coli can thrive and produce significant amounts of l-asparaginase, contributing to
the process's overall efficiency. Furthermore, the energy balance helps optimize utility
requirements, reducing energy consumption and minimizing any potential negative

environmental impact.



Equipment List and Unit Description

Our team conducted research on the various pieces of equipment required for the scale-up
design process of L-Asparaginase, as depicted in the process flow diagram Figure 6. We
compiled a list of equipment along with their respective capacities and brief unit descriptions, as
outlined below in Table 1.

Table 1. Equipment list and Unit Description

Equipment Capacity Unit Description

A cylindrical container used for culturing and
growing microorganisms or cells in liquid
Shake Flask 500 mL media. The flask can be agitated to enhance
oxygen and nutrient supply to the cells.

A large vessel used for growing microorganisms
or cells on a large scale in submerged culture.
Fermenter (Submerged) 60,000 L The culture is agitated to provide oxygen and
nutrient supply to the cells.

A device used for breaking down and
emulsifying substances into smaller particles or

Homogenizer 120 L droplets.
A device used for separating particles in a liquid
. or mixture by spinning it at high speeds, causing
Centrifuge S L the particles to settle according to their density.
A device used for separating and purifying
Distillation Device 35L different components of a mixture based on their

boiling points.

A device used for purifying substances, such as
proteins or chemicals, from a mixture through a
series of steps such as chromatography,
filtration, or crystallization.

Purification Device 2000 L




A device used for removing water from a
substance by freezing it and then applying a
Freeze Dryer/Storage S0L vacuum, resulting in the sublimation of water. It

is also used for storing samples in a low
humidity environment to prevent degradation.

In summary, the equipment research we conducted for the scale-up design process of
L-Asparaginase has identified the key pieces required and their capacities, as outlined in Table 1.
These findings show the significance of selecting appropriate equipment for efficient and
cost-effective large-scale production of L-Asparaginase, while also considering specific
requirements and limitations. With this in mind, we can now move forward with the next steps of

the design process, which is discussing the cost summary of this equipment.



Equipment Cost Summary

To prepare a cost summary for our company's large-scale production, we needed to
determine the cost per unit, quantity required, and total cost of each piece of equipment. Since
the production goal for L-Asparaginase is around 7,000 kg/day, the required quantities varied
based on the capacity size of each unit. After thorough research and calculations, we created

Table 2, that outlines the total cost of each equipment.

Table 2. Equipment Cost Summary for the large-scale production of L-Asparaginase

Quantity
Equipment Cost Per Unit ($) Required Total Cost ($)
Shake Flask (500 mL) $7 2,000 $14,000
Fermenter (Submerged) (60,000 L) $1,500,000 9 $13,500,000
Homogenizer (120L) $37,113 8 $296,904
Centrifuge (5L) $19,397 192 $3,724,224
Distillation Device (3.5L) $154,990 274 $42,467,260
Purification Device (2000L) $170,000 1 $170,000
Freeze Dryer/Storage (50L) $100,000 1 $100,000

According to Table 2, the 500 mL shake flask, 5 L centrifuge device, and 3.5 L
distillation device were found to require the largest quantities to achieve the desired production
rate of L-Asparaginase. Among the equipment used in this process, the 60,000 L fermenter
stands out as the most expensive, costing approximately $1.5 million, and serving as the core of
the production line for our product. The final two steps of the production, the 2000 L purification
device, and the 50 L freeze dryer storage unit, require only one each. It is important to note that
the equipment mentioned above are one-time purchases that necessitate maintenance throughout
the years of production. As such, they can be regarded as fixed capital investments, which will

be discussed further in the next section.



Fixed Capital Investment Summary

As previously noted in the equipment cost summary, the equipment represents a
significant portion of our company's fixed capital investment. Fixed capital investments refer to
permanent purchases made by investors. In Table 3, we have compiled a list of these necessary

purchases required to initiate the production of L-Asparaginase.

Table 3. The Fixed Capital Investment List

Cost Per
Fixed Capital Investment Unit ($) Quantity Required Total Cost ($)
Shake Flask (500 mL) $7 2,000 $14,000
Fermenter (Submerged) (60,000 L) $1,500,000 9 $13,500,000
Homogenizer (120L) $37,113 8 $296,904
Centrifuge (5L) $19,397 192 $3,724,224
Distillation Device (3.5L) $154,990 274 $42,467,260
Purification Device (2000L) $170,000 1 $170,000
Freeze Dryer/Storage (S0L) $100,000 1 $100,000
Building $1,225,000 2 $2,450,000
Total Fixed Capital
Investment $62,722,388

Table 3 provides a comprehensive breakdown of each capital investment, including its
corresponding price and quantity. In addition to the equipment list, we have also included the
building, which is crucial for housing this manufacturing plant. Our company intends to have
two warehouses, each spanning approximately 25,000 sq ft, that will accommodate all the
machinery, except for the fermenters. These will be located outside of the warehouses but will be
connected to the building to ensure the sterility of the process. The total fixed capital investment

was then calculated for all of the machinery which came out to be $62,722,388.



Biosafety, Health, and Environmental Consideration

L-asparaginase is widely used in the food industry to reduce carcinogens and improve
human health. However, its production process can generate several waste streams, including
biomass, effluent, solid wastes, and harmful chemicals that can potentially contaminate the
environment. The biomass generated during the cell homogenization step can be mutagenic and,
if released into the environment, can harm other organisms. To address this, it is necessary to
remove the biomass and properly dispose of the effluent. Ultrafiltration and recycling of
wastewater can reduce the overall amount of wastewater generated, thereby reducing energy
consumption and environmental impacts.

Acetic acid, another byproduct of the fermentation process, is corrosive and can cause
significant damage to skin and tissue. Dilution with high amounts of water is the conventional
mitigation strategy. However, acetic acid is also used in petroleum production and as a food
additive. Collecting the crude material and selling it to companies for these applications is a
viable alternative that not only limits environmental damage but also generates income for the
process. As of current, only about 1.13 g/L of acetic acid are generated throughout the process,
which has both positive and negative aspects. Less acetic acid produced means less can be sold
for other industrial uses, and this results in less side profit. However, since such a small quantity
is actually inside the fermentation system, pH is unlikely to drop significantly. This means less
control is necessary, and it reduces the likelihood that the acid will need to be neutralized with a
base, so the recycle stream is a dependable, albeit small, source of additional income for the

company.



Ammonia, a byproduct of the fermentation process, is a severe environmental concern.
Excess ammonia can cause acidification of the atmosphere, fine particulate matter, and health
problems such as COPD and asthma in humans. Filtering all gasses exiting the facility and
reducing ammonia production through optimization of the fermentation process can help prevent
ammonia from escaping into the environment.

Reducing the production process's overall footprint is the easiest way to minimize
negative impacts on the environment. Alma has optimized the entire process by using larger
fermenters and running multiple cycles simultaneously to reduce waste and energy input. The
economics of this environmental plan seem promising as it can reduce unnecessary waste and
minimize costs while keeping prices low and remaining competitive in the industry. Additionally,
the production of L-asparaginase is relatively green as it requires few toxic chemicals and
incorporates biosafety measures, making it economically feasible to mitigate any potential

damage.



Operation Costs

In the next phase of the scale-up design process, our team considered the operational
costs associated with the production of L-Asparaginase. We identified three cost categories for
this portion of the design: raw materials, equipment and facilities, and labor costs. Raw materials
consist of biomass and substrates used as inputs in the fermentation process. The equipment and
facilities category encompasses the cost of maintenance and utilities required to keep the process
running. Lastly, labor cost involves three different types of workers: process monitors, equipment
operators, and quality control testers. We determined the annual costs for each category and

summarized them in Table 4 below.

Table 4. Annual Operation Cost

Cost Category Annual Costs ($)
Raw Materials $4,623,913
Equipment and Facilities $14,698,535
Labor Cost $8,488,440
Total Operation Costs $27,810,889

Table 4 summarizes the annual costs for each category, which allowed us to determine the
total annual operating cost of $27,810,889 for the production process of L-Asparaginase. The
largest cost contributor was the equipment and facilities category, while raw materials had the
lowest cost. It's important to note that these operating costs are subject to fluctuations over time
due to inflation rates for workers and our company's ability to develop strategies on saving on

the utilities in the plant.



Economic Analysis

Upon finalizing the equipment costs, fixed capital investment, and annual operation costs,
our team conducted a comprehensive economic analysis to assess the feasibility of our
L-Asparaginase scale-up design process. Our analysis revealed a robust market demand for
L-Asparaginase, which was estimated to be worth $365 million according to "Market Watch" in
2023. Next, we evaluated the projected timeline for setting up our production process, which was
estimated to take approximately three years, and included the fixed capital investments outlined
in Table 3.

Upon completion of the initial investments, we began our production process and started
accruing annual profits. A profit analysis chart was created in Figure 6 to estimate the annual and
cumulative profits for our L-Asparaginase production over a period of 10 years. This analysis
provides key insights into the project's profitability over time, including any fluctuations in
profitability from year to year.

Projected Start-up Profit
Annual Profit = Cumulative Profit
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Figure 6. Projected Start-up profit analysis for first 10 years



According to the profit analysis chart in Figure 6, the first three years of the 10-year
period were dedicated to capital investments, which were spread out over the period. During year
3, we initiated our production process, which incurred the annual operation costs listed in Table
4. In year 4, we started generating annual profits, based on our projected market share, which
was set to increase over time.

As demonstrated in the chart, the cumulative profits accrued by the production process
are projected to exceed the initial capital investments by the end of year 7. This indicates the
viability of the project in the long run. Our profitability is expected to increase with a greater

share of the L-Asparaginase market, demonstrating the potential for sustained growth over time.



Budget

In order for Alma to develop an optimal production process of L-asparaginase, an
accurate budget is needed to help in gathering the materials for this project. The main
components contributing to this budget include the technology and materials being used for the
lab scale production of the enzyme, the software used to design the finalized plasmids for this
process, and the purchased plasmids designed from this software. As mentioned before, one of
our key stakeholders, Dr. Yan is providing our team access to his metabolic engineering lab,
which greatly reduces our budget. This lab includes all the necessary resources for the lab
production process mentioned in the lab protocol, like a PCR machine and a centrifuge (Table
1A).

As for the software being used for the designing portion of the plasmids, we chose to use
SnapGene. An annual subscription for this software is estimated to be $150 for students. The
base pair (BP) sequences specified for each modified plasmid in SnapGene were then transferred
over to Twist BioScience. This is the company we are purchasing our four chosen genes from,
which has a price breakdown of $0.07 per BP. The estimated cost for each gene is approximately
$75.00, giving a total purchase cost of $300 from Twist Bioscience. Therefore, the total budget is
currently estimated to be around $500 including taxes and fees from these online orders.

Our team at Alma gathered this information pretty early during the development process
of our plasmids and lab protocol. So, we have successfully been granted $550 from the UGA
start-up program to cover the expenses for the software and genes in this project. The additional

$50 granted by this program will assist with miscellaneous costs not yet determined in the



upcoming months. Next semester, participation in the University of Georgia’s Kickstarter Funds
will also potentially add funding for additional lab materials and reagents.

Using financial data gathered throughout the entire process, an economic analysis will be
fully completed. Completion of this analysis will likely be the final step of the project, as it
requires data gathered from the scale-up bioprocess simulation. Ultimately, this analysis will give
insight into the economic feasibility of the proposed process (Figure 11A), evaluating key
parameters such as raw materials cost, the market price of L-asparaginase, and net present annual

worth.



Regulatory Information

Since this project involves the addition of genetically modified microorganisms and
enzymes to food, it is crucial to abide by the many codes and regulations regarding a product.
The team is actively reading into the related regulatory requirements and will continue to review
the production process accordingly. As of current, the team will study the safety data sheets
regarding each reagent and organism involved in the process, including that of the cells used in
the production of vectors containing the genes, the cells used to express L-asparaginase, and the
isolated L-asparaginase itself. The team will reference the FDA Guidance for Industry
Acrylamide in Foods (2016) as well as the Codex Alimentarius Code of Practice for the
Reduction of Acrylamide in Foods (2009).

Thus far, the only regulatory code deemed necessary by the team is the U.S. Code of
Federal Regulations Title 21 Food and Drug, Part 170 Food Additives, Section 30 Eligibility for
classification as generally recognized as safe (GRAS) (21 C.FR § 170.30). This necessity was
determined by looking into five total GRAS Notifications (No. 604, 476, 428, 214, and 201)
relating to L-asparaginase presented on the FDA’s inventory of GRAS notices, which have
provided sufficient amounts of information regarding the enzyme’s production and regulation.

The team will also abide by Current Good Manufacturing Practices (cGMPs) for Food
and Dietary Supplements and the Occupational Safety and Health Administration (OSHA)
guidelines. Following these codes, jurisdictions, and regulations will allow for a healthy work

environment and ultimately a product that will decrease carcinogens in processed food



Future Experiments

Based on the findings of this project, there are several promising avenues for future
research in this area. One potential area for exploration is protein structure optimization. This
method involves altering the three-dimensional structure of L-asparaginase to improve its
performance and efficiency, by modifying specific amino acids within the protein. Optimizing
the structure of L-asparaginase can improve the protein’s function, stability, and expression
levels, which in turn can lead to higher production yields.

Another area of interest is codon optimization, which involves modifying the nucleotide
sequence of the genes to optimize the codons that encode each amino acid within the protein.
This process is used to improve gene expression and improve the translational efficiency of the
chosen gene, by taking the preferred codons of the host organism into account. Codon
optimization can improve the efficiency and accuracy of protein synthesis, and can additionally
lead to higher yields of the protein. Metabolic pathway optimization is also a potential method
that could increase the overall efficiency of the production process. This can be done by
modulating the expression levels of genes involved in the biosynthesis of asparagine or altering
the metabolic flux through the pathway.

In addition to these optimization strategies, there are also several experimental
approaches that can enhance protein production. Further investigation can be done into the shake
flask conditions of our laboratory experiments, and the potential addition of different salts to
improve bacterial growth and protein expression levels. Additionally, the exploration of
additional genes beyond the four that we examined can allow for the identification of a more
effective alternative for l-asparaginase production. It would also be worthwhile to retest the four

original genes in our study to ensure the validity of the results and confirm our previous findings.



Another potential area of exploration is the use of fungi as a potential expression system.
Fungi can offer several advantages over bacterial expression and generally have a higher
capacity for protein production. Certain fungi such as Aspergillus or Penicillium have been
shown to produce L-asparaginase with high yields and activity. Experimentation with different
fungal strains and growth conditions can expand the scope beyond bacterial expression systems,

and can potentially allow for a more efficient method of producing L-asparaginase.



Conclusion and Recommendations

Overall, based on our preliminary investigations using gene cloning and our scaled-up
model, Alma proposes engineering recombinant E. coli with the gene from Campylobacter
corcagiensis to help produce L-asparaginase. This enzyme is commonly used in the food
industry to mitigate carcinogen production during baking processes that utilize the Maillard
reaction. Thus, Alma focused primarily on the production of L-asparaginase for this application.
Following the construction and cloning of plasmids containing our gene, Alma suggests
culturing BL21 E. coli in shake flasks to an appropriate density as the first step in production and
then inoculating a 60,000 L fed-batch submerged fermenter with approximately 0.1 g/L of E. coli
cells. After a 24 hour residence period, the fermentation product should move through
homogenization and centrifugation steps to eventually obtain a concentrated protein solution.
This will be evaporated and freeze-dried for storage, ultimately resulting in a finalized protein
product, with the company making 6,960 kg/day to remain competitive in the market. The unit
price for this product was estimated to be $40 once completed. Within our facilities, we will treat
waste streams for ammonia, acetic acid, and excess biomass while maintaining green chemistry,
and we will make attempts to minimize our environmental footprint at all steps of the process.
Additionally, we will abide by FDA guidelines for good manufacturing processes for the
production of a food-additive. Alma wishes to do further research by modifying our gene,
examining other genes, and making the fermentation process more efficient by metabolically

engineering the fermentation reaction.
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Table 1A. BOM Lab Scale Production

Bill of Material for Lab Scale Production of L-Asparaginase

Type of Product Name of Inventory Qty

Gene Software Annual SnapGene Subscription 1
Gene Uncharacterized 1
Gene Actinobacillus 1
Gene Campylobacter 1
Gene Aeromonas 1
Equipment PCR 1
Equipment Centrifuge 1
Equipment Plates 48
Equipment Shake Flask 48
Equipment Incubator 2
Materials Media 2
Materials Antibiotics 2




Materials Cells culture 2

Table 2A. BOM Large Scale Production

Bill of Material for Large Scale Production of L-Asparaginase

Type of Product Name of Inventory Qty
Machinery Shake Flask 2000
Machinery Fermenter (Submerged) 9
Machinery Homogenizer 8
Machinery Centrifuge 192
Machinery Distillation Device 274
Machinery Purification Device 1
Machinery Freeze Dryer/Storage 1

Table 3A. Interview Q/A with Novex Innovations

Questions Answers

What is the biggest difficulty faced when Reproducibility at a larger scale.
Specifically with organisms, a 1ml vessel

and a 10L vessel will not necessarily
work in the same way. Testing critical
parameters and the effects of scale should
be evaluated early on to have a good
understanding of scale effects.

scaling a process up?

Of what you have listed, the initial two,
design and regulation would be the more
lengthy and most inefficient activities.

From design to regulations to manufacturing
to distribution, what part of the process is the
slowest or most inefficient?

With respect to a generic type product,
that may have a different route of
manufacturing or increased throughput,
which may carry a different impurity
profile.The testing will be a large
component of time and money in making
sure the impurity profile is comparable
(easiest) or new impurities would not

What is typically the biggest regulatory hurdle
faced when manufacturing a drug product?




create any problems.

Generally speaking, what part of a drug
manufacturing process is the most costly?

In most cases the most expensive
component of manufacturing is related to
labor costs. Therefore the key in the
process development stage, a lot of effort
should be applied to an efficient process.

What does a typical day look like for you?
What are some challenges you face most
often in your position?

A cross section of an average day would
be evaluating ongoing activities,
maintaining customer
relationships/requirements for future
work, work on new projects that are
being onboarded, evaluating new
technologies and regulatory
environments, document
maintenance/creation and employee
interactions to ensure proper positioning
of experiences.

The biggest challenge is balancing
financial aspects related to properly
costing projects and ensuring an
appropriate return to support the business
and support a successful path into the
future.

What are some characteristics of a patented
process that would entice you to use it?

Patents are interesting animals. The first I
would look at is what type of holes are in
the patent that could be taken advantage
of, by not needing to use it. If the patent
were to be licensed I would make sure it
was solid so that no one could take
advantage of process variables that don’t
fall within a viable option that would
allow a competitor to circumvent
something that you would be paying for.
It is very critical to negotiate the best
possible licensing fees to ensure that it
doesn’t impact your performance as a
company in the future.

Do you often speak with the actual consumers
of your drug products? If so, what features of
your product are they satisfied with? What
features are they dissatisfied with?

All the time. This is the most important
aspect of successful customer
relationships.

Providing insight into their program
along the way. Personal connection with

them to be a part or component of their




success and setbacks.
Sometimes price and some wish they
had/controlled 100% of our time.

I understand you do contract work with other
companies; what encourages them to contract
their work instead of manufacturing or
developing the process themselves?

With a new company, they don’t have the
resources, infrastructure and intellectual
know how to operate a business. They
need to focus what little resource they
have at driving the product to market as
the source of income from a marketed
product is the key component to the
survival of the company.

When working with biologics or living
organisms, what is one issue your company
faces specific to them?

Understanding the proper support and
maintenance of cell lines to ensure pure
colonies now and in the future. Also
ensuring the ability to segregate and
ability to ensure a complete kill during
the cleaning process.

Table 4A. Interview Q/A with Takeda

Questions

Answers

What does a typical day look like for you?
What are some challenges you face most
often in your position?

I am part of a team in charge of a process line
for an albumin product. There are about 16
people in our department and I work with a
smaller team of 3 or 4. [ was the person to say
if a product was good or bad, and dealt with
variables like pH and temperature. I worked
on pilot scale equipment as well and was
responsible with creating the mathematical
models and conversion rates for the reactions.

What is typically the biggest regulatory hurdle
faced when manufacturing a drug product?

Every single person that works at Takeda has
to keep regulatory standards in mind. If |
wanted to change any parameter to the
process I was working on like flowrate for
example, I had to go to the quality department
to get approved. The quality department acts
as the lawmakers of the site.




When working with biologics or living
organisms, what is one issue your company
faces specific to them?

The Takeda plant in Covington mainly works
on plasma-based biologics. Purifying plasma
involves processes like fractionation,
centrifugation, precipitation, and filtration.
One thing to keep in mind with this product in
particular is that different proteins purify at
different points, such as different temperatures
or pHs. It was important to identify the
characteristics of your desired product.

How has your lab experience during
university aided you in your career at Takeda?

Working with Dr. Yan for my Master’s degree
taught me how to problem solve, specifically
how to translate scientific language into
something meaningful and conveyable.
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Appendix B

Mass and Energy Balance Python Code:

import numpy as np

from scipy.integrate import odeint
import matplotlib.pyplot as plt

# Import rcParams from matplotlib
from matplotlib import rcParams
import seaborn as sns

import math

# Set the seaborn color palette
sns.set_palette("colorblind")

# Set the global font size and family
rcParams.update({"font.size": 16, "font.family": "serif", "font.serif": "DejaVu Serif"})

# Constants

S0=39.40 #g/L

X0=0.10 #g/L

P0=0.0 #g/L

mu max = 1.2 # 1/hr

Ks=1 #g/L

Yxs =0.5

Ypx = 15.05 # find the correct value later

Yx02 =1.06 # g 02/g X, assumed yield coefficient for oxygen consumption
Yax = 0.92 # g acetic acid/g X, assumed value, find the correct value later
02 0=.008

A0=0.0 #g/L

V0=79.21 #L

F =201.34 # L/hr, assumed constant feed rate

T feed =298.15 # Feed temperature (K), assuming room temperature (25°C)
St=55.73 # g/L, assumed constant substrate concentration in feed

kLa =258.13 # h”-1, assumed mass transfer coefficient

02 sat=0.0075 # g/L, assumed saturation concentration of oxygen
Vmax = 60000 # L, maximum reactor volume

aspect ratio =3

endtime = 24 # hours

timestep = 0.5 # hours

# Inhibition constants

Ki acetic_acid =1.2 # g/L, assumed acetic acid inhibition constant
Ki glucose =200 # g/L, assumed glucose inhibition constant

K 02 =.001 #g/L, assumed half saturation constant of oxygen



# Energy balance constants

heat of fermentation ecoli =-20000 # Heat of fermentation for E. coli (J/g)
heat transfer coefficient = 500 # Heat transfer coefficient (W/m”"2K)
#reactor_area =400 # Reactor surface area touching heat exchanger (m”2)
ambient temperature =400 # Ambient temperature (K)

specific_heat capacity =4.186e3 # J/kg'K

rho =1 #kg/L

TO =298.15 # Initial temperature value (K), assuming room temperature (25°C)
initial internal energy = VO * rho * specific_heat capacity * TO #J
agitation_power per volume =10 # W/L

# Heat exchanger area

volume m3 = Vmax / 1000

D = (6 * volume _m3 / (math.pi * aspect_ratio))**(1/3)

initial H= V0 / (math.pi * (D/2)**2) # Initial height of the liquid in the bioreactor (m)
H max = aspect_ratio * D # Maximum height of the bioreactor (m)

H exchanger max = H max # Maximum allowed height for the heat exchanger (m)

def heat exchanger area(V):

V_m3 =V /1000 # Convert the volume from liters to cubic meters

H=V_m3/ (math.pi * (D/2)**2) # Calculate the height of the liquid in the bioreactor based
on its volume

return 2 * math.pi * (D/2) * H # Lateral surface area of the cylindrical bioreactor

def pid_controller(Kp, Ki, Kd, setpoint, current_value, integral, derivative, dt):
error = setpoint - current_value
P _term = Kp * error
I term = Ki * integral * dt
D term = Kd * derivative / dt
return P_term + 1 term + D _term

temperature_errors = []

def monod model(t, y, F, Sf):
S, X,P,V,02, A, U, T, int_error=y

mu=mu max *S/(Ks+S) *(1-A/Ki acetic acid) * (1 - S/Ki_ glucose) * O2/(K 02+02) #
Monod equation with inhibition terms ADD OXYGEN
g 02 =Yx02 * mu # Oxygen consumption rate

# Mass balance equations
dSdt=-mu* X/Yxs+F *(Sf-S)/V
dXdt=mu*X-F*X/V
dPdt=mu* X * Ypx-F*P/V
dvdt=F * (1 - V/ Vmax)



dO2dt=-q 02 * X+ kLa * (O2_sat - O2)
dAdt=mu*X *Yax-F*A/V

# PID controller for the heat exchanger area
setpoint_temperature = 328.5

Kp =852.3879772964561 # Proportional gain
Ki=472.39665277036545 # Integral gain

Kd =141.95811974998108 # Derivative gain

temperature errors.append(setpoint_temperature - T)
integral error = int_error + (setpoint_temperature - T) * timestep

derivative error = (setpoint_temperature - T) / timestep
heat_exchanger area correction = pid_controller(Kp, Ki, Kd, setpoint_temperature, T,
integral error, derivative_error, timestep

current_reactor_area = heat exchanger area(V) + heat exchanger area correction

# Energy balance equation
dUdt = -X * mu * heat_of fermentation_ecoli \
- heat transfer coefficient * current reactor area * (T - ambient temperature) \
+ F * rho * specific_heat capacity * (T feed-T)\
+ agitation_power per volume * V

# Temperature balance equation
dTdt =dUdt/ (V * specific_heat capacity * rho)
return np.array([dSdt, dXdt, dPdt, dVdt, dO2dt, dAdt, dUdt, dTdt, setpoint_temperature - T])

# Initial conditions
y0 =[S0, X0, PO, VO, O2 0, A0, initial internal energy, TO, 0] # Add initial internal energy
and initial temperature error here

# Time points
t = np.arange(0, endtime + timestep, timestep)
t array =t # Store the time points array for use inside the monod model function

# Solve the ODE

from scipy.integrate import solve ivp

result = solve ivp(lambda t, y: monod model(t, y, F, Sf), (0, endtime), y0, t eval=t,
method="BDF")



# Extract the results

S _result = np.interp(t, result.t, result.y[0, :])
X_result = np.interp(t, result.t, result.y[1, :])
P_result = np.interp(t, result.t, result.y[2, :])
V_result = np.interp(t, result.t, result.y[3, :])
02 _result = np.interp(t, result.t, result.y[4, :])
A result = np.interp(t, result.t, result.y[5, :])
U _result = np.interp(t, result.t, result.y[6, :])
T result = np.interp(t, result.t, result.y[7, :])

heat_exchanger area result = np.array([heat exchanger area(V) for V in V_result])

logoblue = "#5CB9F2"
logolightblue = "#5EF2C8"
logogreen = "#68F205"
logored = "#F20505"
logodarkred = "#8C0303"

# Plot the mass balance results

figl, ax1 = plt.subplots(figsize=(14, 10))

ax1.plot(t, S_result, label="Substrate (S)", linewidth=4, color=logolightblue)
ax1.plot(t, X result, label="Biomass (X)", linewidth=4, linestyle='--', zorder=10,
color=logogreen)

ax1.plot(t, P_result, label="Product (P)", linewidth=4, color=logoblue)
ax1.plot(t, O2_ result, label="Oxygen (02)", linewidth=4, color=logored)
ax1.plot(t, A_result, label="Acetic Acid (A)", linewidth=4, color=logodarkred)

axl.set xlabel("Time (hours)", fontsize=20, labelpad=15)
axl.set ylabel("Concentration (g/L)", fontsize=20, labelpad=15)
axl.set _title("Fed-batch Reactor Monod Model: Mass Balance", fontsize=24, pad=20)

ax1.legend(loc="best', fontsize="x-large', shadow=True, framealpha=1, edgecolor='black")
ax1.grid(True, linestyle="--', linewidth=0.5)
ax1.tick params(axis='both', which="major', labelsize=18)

figl.savefig("fed batch reactor monod mass balance.png", dpi=300)
# Plot the energy balance results

fig2, ax2 = plt.subplots(figsize=(12, 8))

ax2.plot(t, T result, label="Temperature (T)", linewidth=2)

ax2.set xlabel("Time (hours)")
ax2.set_ylabel("Temperature (K)")



ax2.set _title("Fed-batch Reactor Monod Model: Energy Balance")
ax2.legend()

ax2.grid()

min_temp = np.min(T_result)

max_temp = np.max(T_result)

#ax2.set_ylim(min_temp * 0.9999, max_temp * 1.0001)

fig2.savefig("fed batch reactor monod energy balance heat exchanger area.png")

# Display final values
final values =result.y[:, -1] # Get the final values from the last column of the result.y array

print("Final values:")

print(f"Substrate (S): {final values[0]:.2f} g/L")
print(f"Biomass (X): {final values[1]:.2f} g/L")
print(f"Product (P): {final values[2]:.2f} g/L")
print(f"Volume (V): {final values[3]:.2f} L")
print(f"Oxygen (02): {final values[4]:.5f} g/L")
print(f"Acetic Acid (A): {final values[5]:.2f} g/L")
print(f"Internal Energy (U): {final values[6]:.2f} J")
print(f"Temperature (T): {final values[7]:.2f} K")

Profit Optimization Python Code:

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from deap import base, creator, tools, algorithms
import random

# Existing Monod model code (monod model function and constants) should be placed here

# Constants

S0=27.5 #g/L

X0=1.8 #g/L

P0=0.0 #g/L

mu max = 1.2 # 1/hr

Ks=1 #g/L

Yxs =0.5

Ypx = 15.05 # find the correct value later

Yx02 =1.06 # g 02/g X, assumed yield coefficient for oxygen consumption
Yax =0.92 # g acetic acid/g X, assumed value, find the correct value later
02 0=.008

A0=0.0 #¢g/L



VO0=3 #L

F =170 # L/hr, assumed constant feed rate

St=100 # g/L, assumed constant substrate concentration in feed
kLa =250 # h”-1, assumed mass transfer coefficient

02 sat=0.0075 # g/L, assumed saturation concentration of oxygen
Vmax = 60000 # L, maximum reactor volume

endtime = 24 # hours

timestep = 0.5 # hours

# Inhibition constants

Ki acetic_acid=1.2 # g/L, assumed acetic acid inhibition constant
Ki glucose =200 # g/L, assumed glucose inhibition constant

K 02 =.001 #g/L, assumed half saturation constant of oxygen

def monod model(y, t, F, Sf):
S, X,P,VO2,A=y
mu=mu max * S/ (Ks+S)* (1-A/Ki acetic_acid) * (1 - S/Ki_glucose) * O2/(K_02+02)

# Monod equation with inhibition terms ADD OXYGEN
q_02 =Yxo02 * mu # Oxygen consumption rate

# Mass balance equations
dSdt=-mu* X/Yxs+F *(Sf-S)/V
dXdt=mu*X-F*X/V
dPdt=mu* X * Ypx-F*P/V
dVdt=F * (1 - V/ Vmax)
dO2dt=-q 02 * X + kLa * (O2_sat - O2)
dAdt=mu*X *Yax-F*A/V

return [dSdt, dXdt, dPdt, dVdt, dO2dt, dAdt]

# Initial conditions
y0 =[S0, X0, PO, VO, O2_0, A0]

# Time points
t = np.arange(0, endtime + timestep, timestep)

# Solve the ODE
result = odeint(monod model, yO0, t, args=(F, Sf), rtol=1e-6, atol=1e-6)

# Objective function to optimize

def objective function(individual):
SO _opt, X0 opt, VO _opt, St opt, kLa opt, F_opt = individual
y0 =[S0 opt, X0 opt, PO, VO opt, O2 0, A0]
result = odeint(monod model, yO0, t, args=(F_opt, Sf opt))
P_result = result[:, 2]



# Calculate profit

final product mass =P_result[-1] * VO _opt

total glucose mass fed =F opt * Sf opt * endtime

profit_product = final product mass * 127 # $/kg

cost_glucose = (SO_opt * VO_opt + total glucose mass_fed) * 0.56 # $/kg
cost_biomass = X0 opt * VO _opt * 78400 # $/kg

profit = profit_product - cost glucose - cost_biomass
return profit,

# Set up DEAP components
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual”, list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("S0", random.uniform, 10, 50)

toolbox.register("X0", random.uniform, 0.1, 10)

toolbox.register("V0", random.uniform, 0, 15000)

toolbox.register("Sf", random.uniform, 50, 150)

toolbox.register("kLa", random.uniform, 100, 400)

toolbox.register("F", random.uniform, 50, 500)

toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.S0, toolbox.X0,
toolbox.V0, toolbox.Sf, toolbox.kLa, toolbox.F), n=1)

toolbox.register("population”, tools.initRepeat, list, toolbox.individual)

toolbox.register("mate", tools.cxTwoPoint)

toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=10, indpb=0.1)
toolbox.register("select", tools.selBest)

toolbox.register("evaluate", objective function)

def custom mutate(individual, mu, sigma, indpb):
for 1 in range(len(individual)):
if random.random() < indpb:

individual[i] += random.gauss(mu, sigma)
ifi==0: #S0

individual[i] = max(min(individual[i], 50), 10)
elifi==1: # X0

individual[i] = max(min(individual[i], 10), 0.1)
elifi==2: #V0

individual[i] = max(min(individual[i], 15000), 0)
elifi==3: #Sf

individual[i] = max(min(individual[i], 150), 50)
elifi==4: #klLa

individual[i] = max(min(individual[i], 400), 100)



return individual,
toolbox.register("mutate", custom mutate, mu=0, sigma=5, indpb=0.1)

def optimize model(ngen, population_size, cxpb, mutpb):
pop = toolbox.population(n=population_size)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)

pop, logbook = algorithms.eaSimple(pop, toolbox, cxpb=cxpb, mutpb=mutpb, ngen=ngen,
stats=stats, halloffame=hof, verbose=True)

return hof]0]

optimized params = optimize_model(ngen=50, population_size=100, cxpb=0.8, mutpb=0.2)
SO_opt, X0 opt, VO_opt, St opt, kLa opt, F_opt = optimized params

total glucose mass fed =F opt * Sf opt * endtime

print("Optimized parameters:")

print(f"Initial glucose concentration (S0): {SO opt:.2f} g/L")

print(f"Initial biomass concentration (X0): {X0 opt:.2f} g/L") # Print optimized biomass
concentration

print(f"Initial volume (V0): {VO_opt:.2f} L")

print(f"Glucose concentration in the feed (Sf): {Sf opt:.2f} g/L")

print(f'"Mass transfer coefficient (kLa): {kLa opt:.2f} h"-1")

print(f"Optimized feed rate (F): {F_opt:.2f} L/hr")

PID Constant Optimization Code:

import numpy as np

from pyswarm import pso

from scipy.integrate import odeint
import matplotlib.pyplot as plt

# Import rcParams from matplotlib
from matplotlib import rcParams
import seaborn as sns

import math

# Constants
S0=39.40 #g/L
X0=0.10 #g/L
P0=0.0 # g/L

mu _max = 1.2 # 1/hr
Ks=1 #g/L



Yxs=0.5

Ypx = 15.05 # find the correct value later

Yx02 =1.06 # g 02/g X, assumed yield coefficient for oxygen consumption
Yax = 0.92 # g acetic acid/g X, assumed value, find the correct value later
02 0=.008

A0=0.0 #¢g/L

V0=79.21 #L

F =201.34 # L/hr, assumed constant feed rate

T feed =298.15 # Feed temperature (K), assuming room temperature (25°C)
St=55.73 # g/L, assumed constant substrate concentration in feed

kLa =258.13 # h”-1, assumed mass transfer coefficient

02 sat=0.0075 # g/L, assumed saturation concentration of oxygen

Vmax = 60000 # L, maximum reactor volume

aspect_ratio =3

endtime = 24 # hours

timestep = 0.5 # hours

# Inhibition constants

Ki acetic_acid= 1.2 # g/L, assumed acetic acid inhibition constant
Ki glucose =200 # g/L, assumed glucose inhibition constant

K 02 =.001 #g/L, assumed half saturation constant of oxygen

# Energy balance constants

heat_of fermentation ecoli =-20000 # Heat of fermentation for E. coli (J/g)
heat transfer coefficient = 500 # Heat transfer coefficient (W/m”2K)

reactor _area =400 # Reactor surface area touching heat exchanger (m”2)
ambient temperature = 300 # Ambient temperature (K)

specific_heat capacity =4.186e3 # J/kg-K

tho = 1 #kg/L

T0O =298.15 # Initial temperature value (K), assuming room temperature (25°C)
initial internal energy = VO * rho * specific_heat capacity * TO #J
agitation_power per volume =10 # W/L

# Heat exchanger area

volume m3 = Vmax / 1000

D = (6 * volume m3 / (math.pi * aspect ratio))**(1/3)

initial H= V0 / (math.pi * (D/2)**2) # Initial height of the liquid in the bioreactor (m)
H max = aspect ratio * D # Maximum height of the bioreactor (m)

H exchanger max = H max # Maximum allowed height for the heat exchanger (m)

# Define an objective function that takes the PID parameters as input
def objective function(pid_params):



Kp, Ki, Kd = pid_params

# Set up and solve the ODE with the given PID parameters
# (insert your existing code to simulate the bioreactor with the given PID parameters)

def heat exchanger area(V):
V_m3 =V /1000 # Convert the volume from liters to cubic meters
H=V_m3/ (math.pi * (D/2)**2) # Calculate the height of the liquid in the bioreactor
based on its volume
return 2 * math.pi * (D/2) * H # Lateral surface area of the cylindrical bioreactor

def pid_controller(Kp, Ki, Kd, setpoint, current_value, integral, derivative, dt):
error = setpoint - current_value
P _term = Kp * error
I term = Ki * integral * dt
D term = Kd * derivative / dt
return P_term + 1 term + D _term

temperature_errors = []

def monod _model(t, y, F, Sf):
S, X,P,V,02,A, U, T, int_error =y

mu=mu _max * S/ (Ks+S)*(1-A/Ki acetic_acid) * (1 - S/Ki_glucose) *
02/(K_02+02) # Monod equation with inhibition terms ADD OXYGEN
q_02 =Yxo02 * mu # Oxygen consumption rate

# Mass balance equations
dSdt=-mu * X/Yxs+F *(Sf-S)/V
dXdt=mu*X-F*X/V
dPdt=mu* X * Ypx-F*P/V
dVdt=F * (1 - V/ Vmax)
dO2dt=-q 02 * X + kLa * (O2_sat - O2)
dAdt=mu*X *Yax-F*A/V

# PID controller for the heat exchanger area
setpoint_temperature = 328.5

Kp = 10000000 # Proportional gain

Ki = 0 # Integral gain

Kd =0 # Derivative gain

temperature errors.append(setpoint temperature - T)
integral error = int_error + (setpoint_temperature - T) * timestep



derivative error = (setpoint_temperature - T) / timestep

heat_exchanger area correction = pid_controller(Kp, Ki, Kd, setpoint_temperature, T,
integral_error, derivative error, timestep)

current_reactor_area = heat exchanger area(V) + heat exchanger area correction

# Energy balance equation

dUdt = -X * mu * heat_of fermentation_ecoli \
- heat_transfer coefficient * current reactor area * (T - ambient temperature) \
+ F * rho * specific_heat capacity * (T feed-T)\
+ agitation_power per volume * V

# Temperature balance equation
dTdt =dUdt/ (V * specific_heat capacity * rho)

return np.array([dSdt, dXdt, dPdt, dVdt, dO2dt, dAdt, dUdt, dTdt, setpoint_temperature - T])

# Initial conditions
y0 =[S0, X0, PO, VO, O2 0, A0, initial internal energy, TO, 0] # Add initial internal energy
and initial temperature error here

# Time points
t = np.arange(0, endtime + timestep, timestep)
t array =t # Store the time points array for use inside the monod model function

# Solve the ODE

from scipy.integrate import solve ivp

result = solve ivp(lambda t, y: monod model(t, y, F, Sf), (0, endtime), y0, t eval=t,
method="BDF")

# We'll minimize the mean squared error between the desired setpoint and the actual
temperature

setpoint_temperature = 328.5

T result =result.y[7] # Extract temperature values (index 7 corresponds to dTdt)

mse = np.mean((T_result - setpoint_temperature)**2)

return mse

# Set bounds for the PID parameters



Ib =10, 0, 0] # Lower bounds for Kp, Ki, and Kd
ub =[1000, 1000, 1000] # Upper bounds for Kp, Ki, and Kd

# Optimize the PID parameters using the particle swarm optimization algorithm
best pid params, = pso(objective function, b, ub)

# Extract the optimized PID parameters
Kp optimized, Ki_optimized, Kd optimized = best pid params

print("Optimized Kp:", Kp optimized)
print("Optimized Ki:", Ki_optimized)
print("Optimized Kd:", Kd optimized)



